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Abstract 

A unified class of inverse filter criteria using two cu- 
mulants, which includes Wiggins’ criterion, Donoho ’s 
criteria and Tugnait ’s criteria as special cases, has been 
proposed b y  Chi and Wu f o r  blind deconvolution and 
equalization of real single-input single-output (SISO) 
linear time-invariant (LTI)  systems. In this paper, we 
extend this class of (single channel) inverse filter crite- 
ria to a family of multistage and a family of single stage 
criteria for deconvolution and equalization ojf real (or 
complex) multi-input multi-output (MIMO) L T I  sys- 
tems with only non-Gaussian measurements. It can be 
shown that the two families of inverse filter criteria lead 
to perfect equalization for MIMO systems under some 
conditions. Some simulation results for the optimum 
inverse filter using gradient type iterative optimization 
algorithms were provided to  support the propo.sed crite- 
ria. Finally, we draw some conclusions. 

1. Introduction 

Multichannel blind deconvolution and equalization 
is a problem to estimate a desired signal U(.) = 
[ul(n), . . . ,u,(n)lT with only a set of measurements 
~ ( n )  = [zl(n), . . . , zq(n)lT given by the following con- 
volutional model: 

00 

~ ( n )  = H(n) * U(.) = H(k)u(n - k) (1) 

where H(n) is the q x p impulse response matrix 
sequence of a pinput  q-output linear time-invariant 
(LTI) system. The problem has recently drawn ex- 
tensive attention in wireless communications, such 

k=-w 
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as mobile communications with asynchronous direct- 
sequence code-division multiple access (DS-CDMA) , 
data communications over dually polarized multipath 
channel, and array signal processing for base-station 
with spatial division multiple access (SDMA). 

Higher-order statistics (HOS) and inverse filters 
have been used for multichannel blind deconvolution 
and equalization [l-51. Inouye and Sat0 [2] extended 
Shalvi and Weinstein’s (single channel) inverse filter 
criterion [6] to both multistage (MS) and single stage 
(SS) multichannel inverse filter criteria. Tugnait [3] 
also extended the single channel inverse filter criteria 
reported in [7] to MS multichannel inverse filter cri- 
teria. These criteria use only second- and third- or 
fourth-order cumulants of signals. On the other hand, 
Chi and Wu [8] proposed a class of single channel in- 
verse filter criteria JT,, using an rth-order (even) and 
an mth-order (> r )  cumulants of real data. This class 
includes Wiggins’ criterion (associated with J 2 , 4 )  [9], 
Donoho’s criteria (associated with Jz,,) [lo], and Tug- 
nait’s (single channel) criteria 5 2 , s ’  52 ,4  and 5 4 , ~  [7] as 
special cases. Note that Shalvi and Weinstein’s criteria 
[6] are actually the same as Donoho’s criteria for real 
data. In this paper, we extend this class of inverse fil- 
ter criteria J,,, to a family of MS and a family of SS 
inverse filter criteria for real (or complex) multi-input 
multi-output (MIMO) LTI systems. 

2. Model assumptions and problem for- 
mulat ion 

Assume that x(n), n = 0 , .  . . , N - 1 are a given 
set of real (or complex) non-Gaussian measurements 
generated from (1) with the following assumptions: 

(Al) The components ui(n),  i = 1 , .  . . , p ,  of the in- 
put vector u(n) are real (or complex), zero-mean, 
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i.i.d. non-Gaussian, and all of them are statisti- 
cally independent of each other. 

(A2) The unknown p input  q-output LTI system 

00 

Z (Z)  = H ( ~ ) z - ~  
n=-co 

is real (or complex) stable with possibly nonmin- 
imum phase. 

(A3) Q L P. 
(A4) The MIMO LTI system X ( z )  is of full rank on 

As mentioned in [3], the assumptions (A3) and (A4) 
are a set of sufficient conditions for the existence of the 
stable inverse filter of X ( z ) .  

Assume that V ( z )  is a stablepxq MIMO LTI system 
and V(n) is the impulse response matrix sequence of 
V ( z ) .  Let 

the unit circle, i.e., r a n k { X ( z ) }  = p for IzI = 1. 

e(n) = [el(n), . . . , ep(n)IT 
= V(n) * x(n) = G(n) * ~ ( n )  (3) 

where 
G(n) = V(n) * H(n) (see (1)) (4) 

is the p x p impulse response matrix sequence of the 
combined overall system, denoted G ( z ) .  

With V ( z )  as an estimate for %(z) ' s  inverse system, 
the goal of multichannel deconvolution and equaliza- 
tion is to find an optimum V ( z )  such that 

4 ( z )  = V ( z )  . % ( z )  = P . D ( z )  (5) 

(perfect equalization) where P is a (nonsingular) per- 
mutation matrix and D ( z )  is a p x p diagonal matrix 
given by 

D ( z )  = diag(a1zpT1 . , apz-Tp) (6) 

in which ai, i = 1 , .  . . , p  are unknown real (or complex) 
scale factors and ~ i ,  i = 1 , .  . . , p  are unknown time 
delays. Consequently, it can be easily observed from 
(3) and (5) that the optimum equalized signal 

e(n) = [ail uil (n  - 7il ) . . . , aipuip (n - Tip )IT (7) 

where { i l l . .  . , ip} is a permuted sequence of the se- 
quence { I , .  . . , p }  associated with P. 

3. Inverse filter criteria for MIMO LTI 
systems 

For ease of later use, let hij(n), wij(n) and gij(n) 
denote the ( i , j ) t h  elements of the matrices H(n), V(n) 

and G(n),  respectively. Moreover, let 

C::,zz = CUM(ei(n), . . . , ei(n),  eF(n), . . . , ef(n)) (8) -- 
11 terms la terms 

denote the (I1 + Z2)th-order cumulant of the ith equal- 
ized signal (i E { 1 , . . . , p } )  

ei(n) = gil (n)  * .l(n) + . . . + gip(n) * ~ p ( n )  (9) 

where the superscript '*' denotes complex conjugation. 
The new multichannel inverse filter criteria to be 

presented below are based on the following theorem: 
Theorem 1. Let the (11 + 1z)th-order cumulant of 
ui(n) be yF,lz where i = 1,. . . ,p .  Assume that all the 
(2s)th-order cumulants of ui(n), i = 1,. . . , p ,  have the 
same sign, i.e., 

sign{$'$} = sign{y:,:} = ...  = sign{y,"p,} ( I O )  

Then under (Al )  through (A4) and 11 + 12 > 2s 2 2, 

A 5 nmax = max{nj, j = I , .  . . , p }  (12) 

where 

The equality of (12) holds if and only if 

gij(n) = aiS(n - ~ i ) S ( j  - j o ) ,  j o  E ( 1 , .  . . , p }  (14) 

where ai is an unknown real (or complex) scale factor, 
ri is an unknown time delay, and j ,  is the index asso- 
ciated with the maximum value of n i l  j = 1,. . . , p  (see 

0 

Note that the results presented in Theorem 1 for 
(s,ll1l2) = (1 ,2,1)  and (1 ,2,2)  havebeenproposedby 
Tugnait [3], while those for other choices of (s, 11,lZ) 
such as (1, 3, l),  (1,3,2) ,  ... are new. Next, based on 
Theorem 1 , two families of multichannel inverse filter 
criteria, which follows, in part, the ideas proposed by 
Inouye and Sato [2], are presented for finding the opti- 
mum inverse filter V ( n ) .  

A. Family of MS Criteria 

Let ~ i ( n ) ~  denote the ith row vector of V(n). The 
family of MS criteria, which, at i th stage, try to find 
the optimum vi(n) using Ji with some uncorrelatedness 
constraints on the obtained (i - 1) inverse filter output 
processes el(n), ..., ei--l(n), is as follows: 

Stage 1: Estimation of vl(n). 
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Maximize 
(15) 

where 21 is given by (11) and 11 + 12 > 2s 2 2. 

Stage i: Estimation of vi(.) for i 2 2. 
Maximize 

where 11 + 12 > 2s 2 2, Xi is a positive real con- 
stant, 2 is the set of all integers, and 

s terms - 
C;:sek (T) = CUM(ei(n), . . . , e i (n) ,  

e ; ( .  - T ) , .  . . , e ; (n  - T ) )  (17) 

(R2) With (s,11,12) = (1 ,2 ,1)  or (1 ,2 ,2) ,  Tugnait's 
MS approach [3] obtains the equalized signal ei(n) 
as the estimate of an input signal uj(n) by un- 
constrained maximization of Ji (Le., without any 
uncorrelatedness constraints on the inverse filter 
output processes) at  the i th  stage. However, this 
approach has to estimate the channel impulse re- 
sponses h ~ ( n ) ,  1 = 1 , .  . . ,q,  for each stage i fol- 
lowed by removing the contribution of uj(n) from 
the measurements, leading to  an MIMO system 
with q outputs and ( p  - i) inputs for the next 
stage. On the other hand, besides many new 
choices for (s, 11,12) ,  the optimum inverse filter 
matrix V(n) is directly estimated by both of the 
proposed MS and SS criteria without need of es- 
timation of the channel impulse responses for sys- 
tem dimension reduction. 

- 

s terms 

The deconvolution and equalization capabilities of 
the proposed MS criteria are supported by the follow- 
ing theorem: 
Theorem 2. The MS criteria given by (15) and (16) 
lead to a solution for s ( z )  that satisfies (5 , )  (perfect 
equalization), provided that Xi given by (16) ;are chosen 

0 
such that Xi 2 tcmax (see (12)). 

B. Family of S S  Criteria 

Again, with some uncorrelatedness constraints on 
the inverse filter output processes, the family of SS cri- 
teria simultaneously estimates vl(n), v2(n), ..., v,(n) 
by maximizing 

where 11 + 12 > 2s 2 2 and X is a positive real con- 
stant, and meanwhile their deconvolution and equal- 
ization capabilities are supported by the following the- 
orem. 
Theorem 3. Under the assumption that all tci, i = 1, 
2, , ..., p (see (13)), are the same, the SS criteria J(ss )  
lead to a solution for g(z)  that satisfies (51) (perfect 

0 
equalization). 

Two worthy remarks regarding the proposed MS and 
SS criteria are given as follows: 

(Rl)  Theorems 2 and 3 are counterparts to the ones 
proposed by Inouye and Sato [2] for their MS and 
SS criteria, respectively, while the latter further 
requires a quite restrictive condition that Y;,"~ = 1 
for all i .  

4. Optimization algorithms for MS and 
SS criteria 

To find the optimum inverse filter V(n) using the 
proposed MS and SS criteria given by (15), (16) and 
(18) with a given set of data, the cumulants used in 
these criteria can be simply replaced by the associated 
sample cumulants, and a causal FIR filter of order L 
can be used as an approximation to V(n). Since the ob- 
jective function J j M S )  given by (15) and (16) for stage 
i is a highly nonlinear function of 

vi 4 [vi1 (01, . . . I vi1 ( L )  , . . . , u i p  (01, . . . , vip ( ~ 1 1 ~  (19) 

and the objective function J ( s s )  given by (18) is also a 
highly nonlinear function of 

A T T  v = [vl , v2 , . . . , VpT]T 

We use gradient,type iterative optimization algorithms 
to find the optimum vi. Specifically, at the lcth itera- 
tion, vi (associated with MS criteria) is updated by 

where p is a positive real constant. Note that the sec- 
ond line of (21) (i.e., normalization for vi[lc]) is due to 
the fact that JjMS) is invariant to  any scaled version of 
vi (see (14)). For SS criteria, v given by (20) is also 
updated in a similar way except that JiMS) is replaced 
by J ( s s )  and normalization operation is performed for 
each vi in v (see (20)). 
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5 .  Simulation results 

In this section, let us present two’simulation exam- 
ples to  demonstrate the proposed multichannel inverse 
filter criteria. In the two examples, synthetic noisy 
data ~ ( n )  for SNR = 20 dB were generated from (l), 
to which q uncorrelated white Gaussian noises were 
added. 

Example 1. (Real signals) 

q = 2) MA(6) system R ( z )  (taken from [3]) given by 
Let us consider a real 2-input 2-output (Le . ,  p = 

U11 ( z )  = 0.6455 - 0.32272-1 + 0 . 6 4 4 5 ~ ~ ~  
- 0 . 3 2 2 7 ~ ~ ~  

3t12(z) = 0.6140 + 0.36842-1 
E21 ( z )  = 0.38732-1 + O.8391zY2 + 0 . 3 2 2 7 ~ - ~  
3 / 2 2 ( ~ )  = -0.25792-1 - 0 . 6 1 4 0 ~ - ~  + 0 . 8 4 4 2 ~ - ~  

+ 0 . 4 4 2 1 ~ - ~  + 0.2579f6  

The driving inputs u,(n), i = 1,2,  were assumed to  
be real, zero-mean, Exponentially i.i.d. with T:,’~ = 1, 
y;;l = 2, T;;~ = 6, and ~ y ; ~  = 24, i = 1,2.  The MS cri- 
teriafor (s, l l ,Z2) = (1,2,1), (1 ,2 ,2)  and (1,3,2) were 
used to  obtain the inverse filters v,, i = 1,2,  with filter 
order L = 14 and A2 = K~~~ (i.e., A2 = 4, 36 and 576 
for (s,ll,Z2) = (1,2,1), (1, 2, 2) and (1, 3, a), respec- 
tively) as required by Theorem 2. Thirty independent 
runs for N = 2048 and 4096 were performed. 

A performance index MISI defined as (taken from 
PI) 

c;=,rc, lg23(.)121 - max{lg23(n)l2,~j/j,n) MISI = 
2 = 1  max{ 1923 (n) I , V j ,  .I 
CL1 [E, lgz3 (n) 121 - max{lgz, l 2  9 .I +? 3=1 max{l923(n)l2,V2,nI 

( 2 2 )  
was used as a measure of the multichannel intersymbol 
interference after equalization. Note that MISI = 0 
when G ( z )  satisfies (5). Table 1 shows average values of 
MISI’s, denoted < MISI >, which were calculated with 
the obtained thirty independent estimates of gz3 (n). 
One can see that all the MISI’s after equalization are 
smaller than the MISI before equalization (the top row 
of Table 1) with the best MISI improvement (around 
14 dB) for (s,Zl,Zz) = (1,2,1). 

Example 2. (Complex signals) 

system 
A real 2-input 2-output nonminimum-phase MA(2) 

I [ 1 - 0.3~;:; 0 . 8 ~ - ~  -0.922-1 
1 - 0.52-1 + 0 . 2 ~ - ~  U ( z )  = 

whose zeros are 0.5946*j1.0738 and -0.1946fj0.2614, 
was used. The input u1(n) was assumed to be a 8- 
PSK signal of unity variance and the other input 7 4 % )  

was a 16-QAM signal of unity variance. The MS cri- 
teria for ( s ,Z l ,Z2)  = (1,2,2) were used to  obtain the 
inverse filters vi, i = 1,2,  with filter order L = 20 and 
A2 = K~~~ = 1 as required by Theorem 2. A single 
realization was performed for data length N = 4096. 

The MISI before equalization is 7.8460 dB and the 
MISI after equalization is -13.6245 dB for this exam- 
ple, i.e., the use of the proposed MS criteria led to 
around 21 dB improvement in MISI. Moreover, Fig- 
ures l(a) and l (b)  show the unequalized signal constel- 
lations (i.e., eye patterns) associated with z l (n)  and 
zz(n), respectively, for n = 0 - 4095. Figures l (c)  and 
l(d) show the equalized signal constellations associated 
with e l ( n )  and e2(n ) ,  respectively, for n = 0 - 4095. 
One can see from these figures that the eye patterns 
after equalization are open to  a sufficient degree. 

6. Conclusions 

Based on Theorem 1 and Inouye and Sato’s ideas, 
we have extended Chi and Wu’s single channel inverse 
filter criteria t o  a family of MS and a family of SS cri- 
teria for blind deconvolution and equalization of real 
(or complex) MIMO LTI systems. Furthermore, we 
proved (Theorems 2 and 3) that under some condi- 
tions, both of the proposed MS and SS criteria lead 
to  perfect equalization, and their efficacy was justified 
through computer simulations. 
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Table 1. Average values of MISl’s over thirty 
independent runs for SNR = 20 dB. 

Initial MISI = 9.8293 dB (before equalization) 

< MISI > (in dB) 

N = 2048 1 N = 4096 
(SI 11 , l 2 )  

I (1,2,1) 1 -4.1371 1 -4.7832 I 
I (1,2,2) I 0.4316 I -2.4964 1 
I (1,3,2) I 5.8262 I 2.3185 I 

-4 

-5 -2 0 2 4 -4 
REAL PART 

(b) 

1.5 

1 -  

2 0.5- 
$. 

z 
3 O -  

E -1  - 

3 2 -0.5- 

-1.5 t 

Figure 1. (a) and (b) Unequalized signal constellations associated with z1 (n) and zz(n), respectively, for 
n = 0 - 4095 and SNR = 20 dB; (c) and (d) equalized signal constellations associated with el(.) and 
eZ(n),  respectively, for n = 0 - 4095 usiiig the MS criteria with (s111,Z2) = (1,2,2). 
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